Effect of protein environment on electronically excited and ionized states of the green fluorescent protein chromophore.
نویسندگان
چکیده
The effect of the protein environment on the electronic structure of the green fluorescent protein (GFP) chromophore is investigated by QM/MM (quantum mechanics/molecular mechanics) calculations. The protein has very small effect on the excitation energy of the bright absorbing and the lowest triplet states of the anionic GFP chromophore, deprotonated 4-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) anion, however, it increases vertical detachment energy from 2.5 eV (gas-phase deprotonated HBDI anion) to 5.0 eV (solvated protein). We also investigated possible existence of the charge-transfer-to-solvent (CTTS) states associated with the GFP chromophore. Although precursors of such states appear in cluster calculations, a tightly packed structure of the protein prevents the formation of the CTTS states in this system. Motivated by a recently discovered new type of photoconversion, oxidative redding, we characterized the redox properties of GFP. The computed standard reduction potential of the anionic form of GFP is 0.47 V (for the GFP(•) + 1e → GFP(-) reaction), and the reduction potential at physiological conditions (pH 7, T = 25 °C) is 0.06 V.
منابع مشابه
The effect of oxidation on the electronic structure of the green fluorescent protein chromophore.
Electronic structure calculations of the singly and doubly ionized states of deprotonated 4(')-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI anion) are presented. One-electron oxidation produces a doublet radical that has blueshifted absorption, whereas the detachment of two electrons yields a closed-shell cation with strongly redshifted (by about 0.6 eV) absorption relative to the HBDI an...
متن کاملQuantum Chemical Benchmark Studies of the Electronic Properties of the Green Fluorescent Protein Chromophore. 1. Electronically Excited and Ionized States of the Anionic Chromophore in the Gas Phase.
We present the results of quantum chemical calculations of the electronic properties of the anionic form of the green fluorescent protein chromophore in the gas phase. The vertical detachment energy of the chromophore is found to be 2.4-2.5 eV, which is below the strongly absorbing ππ* state at 2.6 eV. The vertical excitation of the lowest triplet state is around 1.9 eV, which is below the phot...
متن کاملAn alternate proton acceptor for excited-state proton transfer in green fluorescent protein: rewiring GFP.
The neutral form of the chromophore in wild-type green fluorescent protein (wtGFP) undergoes excited-state proton transfer (ESPT) upon excitation, resulting in characteristic green (508 nm) fluorescence. This ESPT reaction involves a proton relay from the phenol hydroxyl of the chromophore to the ionized side chain of E222, and results in formation of the anionic chromophore in a protein enviro...
متن کاملDynamic Stokes shift in green fluorescent protein variants.
Solvent reorganization around the excited state of a chromophore leads to an emission shift to longer wavelengths during the excited-state lifetime. This solvation response is absent in wild-type green fluorescent protein, and this has been attributed to rigidity in the chromophore's environment necessary to exclude nonradiative transitions to the ground state. The fluorescent protein mPlum was...
متن کاملStructural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein.
The 2.1-A resolution crystal structure of wild-type green fluorescent protein and comparison of it with the recently determined structure of the Ser-65 --> Thr (S65T) mutant explains the dual wavelength absorption and photoisomerization properties of the wild-type protein. The two absorption maxima are caused by a change in the ionization state of the chromophore. The equilibrium between these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 115 25 شماره
صفحات -
تاریخ انتشار 2011